
1 
 

Investigating receptor enzyme activity using time scale analysis 1 

Tao You
1
, Hong Yue

2
 2 

1
Computational Biology, Discovery Sciences, Innovative Medicines & Early Development, 3 

AstraZeneca, Alderley Park, Cheshire, SK10 4TG, UK. Email: dr.tao.you@gmail.com 4 

2
Department of Electrical and Electronic Engineering, University of Strathclyde, Glasgow, 5 

G1 1XW, UK. Email: hong.yue@strath.ac.uk 6 

 7 

Abstract 8 

At early drug discovery, purified protein-based assays are often used to 9 

characterize compound potency. In the context of dose response, it is often 10 

perceived that a time-independent inhibitor is reversible and a time-dependent 11 

inhibitor is irreversible. The legitimacy of this argument is investigated using a 12 

simple kinetics model, where it is revealed by model-based analytical analysis 13 

and numerical studies that dose response of an irreversible inhibitor may appear 14 

time-independent under certain parametric conditions. Hence, the observation of 15 

time-independence cannot be used as sole evidence for identification of inhibitor 16 

reversibility. It has also been discussed how the synthesis and degradation of a 17 

target receptor affect drug inhibition in an in vitro cell-based assay setting. These 18 

processes may also influence dose response of an irreversible inhibitor in such a 19 

way that it appears time-independent under certain conditions. Furthermore, 20 

model-based steady-state analysis reveals the complexity nature of the drug-21 

receptor process. 22 

 23 

Keywords  24 

Inhibitor reversibility; receptor turnover; mathematical modelling; dose 25 

response; time-scale analysis 26 

 27 

  28 



2 
 

1 Introduction 29 

Drug discovery and development typically involve protein-based studies (e.g. target 30 

engagement; typical time scale: microseconds to minutes), in vitro cell-based studies (e.g. 31 

biomarker pharmacodynamics (PD), therapeutic efficacy; typical time scale: minutes to days), 32 

in vivo animal-based studies (e.g. pharmacokinetics (PK), biomarker PD, therapeutic efficacy, 33 

safety evaluation; typical time scale: hours to days) and clinical trials (e.g. PK, PD, safety, 34 

efficacy; typical time scale: days to months). These studies are often organized in this 35 

particular temporal order, in the hope that the results of a previous step (e.g. protein-based 36 

assay) will help inform the design and interpretation of the subsequent experiment (e.g. in 37 

vitro cell assay). 38 

A new paradigm that helps enable robust translation of each type of study arises in recent 39 

years [1], in which mathematical models and model-based systems analysis have played 40 

increasingly important roles. Model development of drug processes using experimental data 41 

has been largely improved through various efforts including sensitivity analysis, parameter 42 

identifiability analysis, model approximation and simplification, model validation and 43 

comparison, etc. [2-5].  44 

Known as Quantitative & Systems Pharmacology (QSP), it employs multi-scale 45 

modelling approaches to integrate data generated from different studies in a drug discovery 46 

and development programme, which span different temporal and dimensional scales [6-8]. 47 

These computational models are able to reconcile different experimental conditions (e.g. in 48 

vitro cell assays and in vivo animal models [9]), with an ultimate aim of bridging preclinical 49 

models to an appropriate clinical setting, and generating statistically robust predictions that 50 

are validated by preclinical and clinical data [10].  51 

Multi-scale modelling has been successfully deployed in drug development programmes, 52 

so that in vitro cell-based studies are consistently integrated with in vivo animal-based studies. 53 

However, the application of QSP approaches in early drug discovery (i.e. integration of 54 

results from protein-based studies and in vitro cell-based studies) has been relatively limited 55 

[11]. QSP models are urgently needed to better understand target engagement in cell-free 56 

environment and in cells, so as to help design of subsequent in vitro and in vivo studies [1].  57 

It is often important to establish dose–response relationship specific for an inhibitor and a 58 

cell type under investigation, which describes the change in effect on a cell caused by 59 

differing levels of exposure (or doses) to an inhibitor after a certain exposure time.  60 
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To help translate in vitro results into in vivo knowledge, models of Target Mediated Drug 61 

Disposition (TMDD) have been developed to analyse receptor PK/PD relationships [2-5; 7; 8; 62 

12-15]. In addition to drug binding and receptor turnover, these models also consider the 63 

elimination of all species, to mimic in vivo conditions. They can be served as a useful 64 

theoretical framework. Model-based analysis revealed that the necessary and sufficient 65 

condition for receptor rebound in a single dose animal experiment is that elimination rate of 66 

the drug-receptor product being slower than the elimination rates of the drug and of the 67 

receptor [12]. Under the assumption of a constant target pool, the characteristic features of 68 

TMDD dynamics were studied through a mathematical model analysis [13]. A time-scale 69 

analysis was performed to provide accurate approximations of the temporal evolution under 70 

the assumption of high drug binding affinity [14].  71 

Although TMDD models have been used increasingly to facilitate PK/PD studies, cellular 72 

kinetics may sometimes not be fully appreciated in design of protein-based assays. For 73 

instance, the potency of a chemical entity to inhibit an enzyme is often characterized by IC50, 74 

the chemical concentration that generates half of maximal inhibition. For an irreversible 75 

inhibitor that covalently modifies a purified target enzyme in a cell-free assay, the chemical 76 

reaction tends to be more complete given a longer drug incubation period. Consequently, IC50 77 

usually exhibits incubation time-dependent shift, making the inhibitor appear more potent at 78 

long incubation periods [16-18]. In contrast, a target protein in a living cell undergoes 79 

turnover (i.e. synthesis and degradation) that are often regulated via transcriptional regulation, 80 

translational control [19] and cell signalling etc. These processes typically happen within 81 

minutes to hours [20], and they may influence cellular response to drug inhibition. In other 82 

words, shooting a moving target in a cell might be different from shooting an immobile target 83 

in a protein-based assay.  84 

The aim of this study is to investigate how drug parameters and cell parameters influence 85 

cellular response to drug treatment at constant drug concentration. We are interested in 86 

understanding whether an irreversible inhibitor necessarily has an incubation time-dependent 87 

IC50 in a protein-based study. In addition, we hope to examine how cell parameters including 88 

target synthesis and degradation rates affect dose response.  89 

The remaining of the paper is organized as follows. A linear model of receptor turnover 90 

and irreversible inhibition is proposed and discussed in Section 2. Investigation of fast drug 91 

process relative to receptor turnover is discussed in Section 3, where both numerical 92 

simulation and ensuing analysis of the eigenvalues are employed. Discussions on slow drug 93 
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process relative to receptor turnover are presented in Section 4. In Section 5, an application of 94 

this model is attempted using aberrant activity in Epidermal Growth Factor Receptor (EGFR) 95 

signaling data. Conclusions are given in Section 6. 96 

2 A model of receptor turnover and drug inhibition 97 

A simple model is proposed to recapitulate the process of receptor turnover, i.e. receptor 98 

synthesis and degradation, together with drug inhibition as shown schematically in Fig. 1. 99 

R – receptor

C - complex

pk

dk

onk

offk
C

ik

R

Receptor 

turnover

Drug 

inhibition

 100 

Fig. 1 Schematic description of receptor turnover and irreversible inhibition 101 

In the receptor turnover process, receptor R is synthesized at a constant rate pk , and degrades 102 

following a first-order kinetics with a rate constant dk . For the sake of simplicity, feedback 103 

mechanisms and subcellular localisation that regulate protein synthesis and stability are not 104 

considered in this model. In the drug inhibition process, a drug molecule first binds R 105 

reversibly to comprise an intermediate complex C with association and dissociation rates onk  106 

and offk , respectively. Note that onk  is an apparent rate that depends on drug concentration. 107 

The complex C then forms a covalent bound irreversibly at the second step, in a first-order 108 

reaction with a rate constant ik . These two processes can be described respectively as follows. 109 

Receptor turnover: R p d
k k

                                                                (1) 110 

Drug inhibition: R Con i

off

k k

k
                                                             (2) 111 

Based on mass-balance principles, the corresponding ordinary differential equations (ODEs) 112 

for concentrations of R and C, denoted as R and C, respectively, are written as 113 
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 
d

d
d on p off

R
k k R k k C

t
                                                  (3) 114 

 
d

d
on off i

C
k R k k C

t
                                                          (4) 115 

with the following units: nM for R, C; nM∙min
-1

 for pk ; and min
-1

 for dk , 
onk , offk  and 

ik . 116 

Here pk  and dk  are cell parameters associated to receptor turnover; 
onk , offk  and 

ik  are drug 117 

parameters for covalent inhibition process. 118 

In the absence of drug, the receptor has a steady state at 0 p dR k k  nM. Scaling R and C 119 

with 0R  in (3) and (4), the two concentration variables become dimensionless terms 120 

0 d pr R R Rk k   and 0 d pc C R C k k  , respectively, and the ODE model can then be 121 

written as 122 

 
d

d
d on d off

r
k k r k k c

t
                                                   (5) 123 

 
d

d
on off i

c
k r k k c

t
                                                            (6) 124 

In this dimension-free representation, the initial conditions are set to be  0 0 1r r   and 125 

 0 0 0c c  . We further use offk  to scale the time term by offk t  , and also to scale 126 

reaction rates with on on offk k  , i i offk k  , and d d offk k  . This brings the following 127 

two ODEs for dimensionless r and c, respectively: 128 

 
d

d
on d d

r
r c  


                                                      (7) 129 

 
d

1
d

on i

c
r c 


                                                              (8) 130 

Denoting  
T

r cX , this ODE model can be written in a matrix format 131 

 

 

0

d

1d

1d 0

d

with (0)

on d d

on i

r

r r

c c c

  

 



 
         

                   
  

  

X

AX f X X

                            (9) 132 
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where 
 

 

1

1

on d

on i

 

 

  
  

  
A  is the state matrix for this linear-time-invariant (LTI) 133 

system;  
T

0df  is the nonhomogeneous part;  
T

0 1 0X  is the vector of initial states 134 

for X.  135 

At the steady state when d d 0r    and d d 0c   , the steady-state values for r and c are 136 

derived from (9) to give 137 

 

 

1

1

i d

ss

i d on i

r
 

   




 
                                                      (10) 138 

 1

on d
ss

i d on i

c
 

   


 
                                                     (11) 139 

Here ssr  and ssc  are used to denote steady-state values or equilibrium points for r and c, 140 

respectively, when time approaches infinity.  141 

Note after the above re-scaling, all terms in (9) are dimensionless including concentration 142 

variables r and c; time  ; and parameters on , i , and d . The ‘disappeared’ receptor 143 

synthesis rate pk  is included in d  through scaling of  0d d off p offk k k k R   . Clearly this 144 

choice of non-dimensionalization requires that 0offk   and 0pk  . All variables and 145 

parameters in (9) are associated with physical quantities and therefore must be nonnegative. 146 

With this dimensionless model, the analysis of system behaviour under different parametric 147 

regimes can be conveniently discussed in a unified scheme. 148 

3 Fast drug process relative to receptor turnover 149 

The parametric regimes have been divided into that of fast drug process and slow drug 150 

process. In this section, the process of fast drug binding and dissociation is firstly discussed. 151 

3.1 Fast drug binding and dissociation relative to receptor turnover 152 

This parametric regime is defined by off dk k  and on dk k . In this case, the receptor 153 

turnover rate dk  is much smaller than the drug binding and dissociation rates onk  and offk .  154 
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(a) When off dk k , i.e., 1d , the period of target coverage (characterized by 1 offk ) 155 

is much shorter than that of receptor degradation (characterized by 1 dk ), which can 156 

be due to: i) short target coverage; ii) slow receptor degradation; and iii) combination 157 

of i) and ii). 158 

(b) When 
on dk k , i.e., 

on d  , a receptor binds a drug molecule at a rate much faster 159 

than its degradation.  160 

Under these two conditions, the term of d  can be ignored, and model (9) is approximated by 161 

 

1

1



 

    
          

on

on i

r r

c c
                                                            (12) 162 

Model (12) is actually an ODE model for the cell-free assay with only the drug process in (2)163 

considered.  164 

When 0i  , by taking d d 0r    and d d 0c   , the steady-state of dynamic system 165 

(12) is deduced to be  166 

0ss ssr c                                                                                     (13) 167 

How small does dk  have to be in comparison to offk  and onk  so as to ensure the validity 168 

of this approximation? This is examined by the following numerical simulation. Firstly, the 169 

full model in (9) is simulated with 0.001i   ( off ik k ) at three different levels of d : 170 

410d
  (Fig. 2 (a)); 

610d
  (Fig. 2 (b)); and 

810d
  (Fig. 2 (c)). Then the full model is 171 

simulated by taking 0d  , which is equivalent to the reduced model in (12), using identical 172 

value for i , as shown in Fig. 2 (d). The range of on  is set to be [1e-5, 1e5] in all 173 

simulations. Four incubation time periods are chosen which are separated with an order of 3 174 

in time scale between each two, i.e., 10
-3

, 1, 10
3
 and 10

6
. Comparing simulation results across 175 

the four panels in the semi-log Fig. 2, it can be observed that there is a clear difference in 176 

dose response in both Fig. 2 (a) and Fig. 2 (b) when compared with the simplified model 177 

results in Fig. 2 (d), but the dose response in Fig. 2 (c) is almost the same as that in Fig. 2 (d). 178 

This shows that, when 
810d
 , model (12) provides a close approximation for dose 179 

responses corresponding to incubation time up to 10
6
.  180 
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In all simulation and illustrative results in this paper, the time terms are represented in τ 181 

(time t scaled by offk ), and the x-axis for on  is in log10 scale in dose-response curves. 182 

 183 

       (a) Full model at 
410 d                                 (b) Full model at 

610d
  184 

 185 

       (c) Full model at 
810d
                             (d) Simplified model (12) 186 

Fig. 2 Dose response curves predicted for four different incubation times, when 0.001i  . 187 

Incubation times shown in the figure legend: black dotted line for 10
-3

; red line with circles 188 
for 10

0
; blue dash-dot line for 10

3
; green solid line for 10

6
. (a) Full model (9) simulated at 189 

410d
 ; (b) Full model simulated at 

610d
 ; (c) Full model simulated at 

810d
 ; (d) 190 

Approximate model in (12). 191 

The approximate model in (12) represents a homogeneous LTI system with 192 

 

1

1

on

on i



 

 
    

A . We can use the eigenvalue method to analyse its dynamic 193 

characteristics. Denoting the trace and determinant of matrix A as 194 
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 trace( ) 1      A on iT , det( )     A on i , the eigenvalues of A are calculated by 195 

 2

1,2 4 2T T    . 196 

For the first eigenvalue 197 

   
2

1

1 1
1 1 4 ,

2 2
on i on i on i                                            (14) 198 

its associated eigenvector is  199 

 
 

T
2

T

1 11 21

1 1 4
1 .

2

i on on i on i

on

v v
     




      
  
 
 

                              (15) 200 

For the second eigenvalue 201 

   
2

2

1 1
1 1 4 ,

2 2
on i on i on i                                            (16) 202 

its associated eigenvector is  203 

 
 

T
2

T

2 12 22

1 1 4
1 .

2

i on on i on i

on

v v
     




      
  
 
 

                             (17) 204 

With initial conditions 𝑟0 = 1  and 𝑐0 = 0 , a general analytical solution for (12) can be 205 

succinctly written as  206 

1 2

1 2

11 12

11 12

( ) 1
( )

( )

r e e

c e e

  

   

  


  

  
         

M                                                 (18) 207 

where all terms regarding eigenvalues and entries in eigenvectors are provided in (14) - (17). 208 

The log10 transformed ratio of the two eigenvalues for different pairs of ( on , i ) is 209 

plotted in a heat map as shown in Fig. 3. From this diagram it is evident that when the two 210 

parameters have similar values and are both above 1, the two eigenvalues 1  and 2  are close 211 

to each other (the red area in Fig. 3). However, if only one parameter is much larger than 1 or 212 

both parameters are much smaller than 1, then the two eigenvalues are widely apart from 213 

each other, i.e. 2 1/ 1   (the blue area in Fig. 3), and the time response of the system is 214 

mainly determined by 
1  in a shorter period. 215 



10 
 

 216 

Fig. 3 10 2 1log ( / )   plotted as a function of 10log ( )on  and 10log ( )i . Values between -10 217 

and 0 are colour-coded. 218 

I IIIII

 219 

Fig. 4 Time responses of r and c under 1on  , 0.001i   and 0d  .  220 

For example, when 1on  , 0.001i  , from (14) to (17), the eigenvalues and 221 

eigenvectors can be calculated as: 1 2.005   , 4

2 5 10    ,  
T

1 0.7069 0.7069    and 222 

 
T

2 0.7073 0.7069    . The short-term time response is driven by 
1  (see region I in Fig. 223 

4), and the long-term time response is driven by 
2  (see region III in Fig. 4). Interestingly, 224 

between these two regions, both r and c have relatively small variations (see region II in Fig. 225 

4). Hence, corresponding dose responses simulated for observation times in this shadowed 226 

region would appear to be similar using experimental data. This time-independent 227 

observation may suggest a reversible inhibition, which is not true from the above analysis. 228 
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3.2 Fast drug binding/dissociation and fast covalent modification  229 

The parametric regime for this scenario is classified by: on d  , off d  , and 230 

i on  , therefore i d  . In this case, both reversible binding/dissociation and irreversible 231 

modification are much faster than receptor turnover. The system can also be modelled by (12). 232 

It can be seen from the heat map in Fig. 3 that the two eigenvalues are close to each other in 233 

this region, which means the two inherent time scales are not far away from each other. For 234 

the simulations demonstrated in Fig. 5, the two eigenvalues are 1 2.618    and 2 0.382   , 235 

calculated from (14) and (16), respectively. In this case, the dose response curves measured at 236 

different incubation times are predicted to be clearly separated from each other (Fig. 5 (a)).  237 

The concentrations of R and C reach steady states with both values at 0 (Fig. 5 (b)), which 238 

is consistent with the steady-state analysis conclusion given in (13). Similar to the simulation 239 

results shown in Fig. 4, Fig. 5 (b) also demonstrates that the receptor concentration decreases 240 

monotonically to its steady state, but the complex concentration goes through a rapid increase 241 

initially and then decreases in a slower time scale to its steady state. 242 

  243 

           (a) Dose response curves                                 (b) Time responses under 1on   244 

Fig. 5 Dose response curves and time responses of r and c under 0,d   1on i   .  245 

3.3 Fast drug binding/dissociation and slow covalent modification 246 

Under the condition of fast drug process over receptor turnover ( off dk k  and on dk k ), 247 

we further consider the regime of off ik k ,   i.e., 1.i  This means the drug dissociation is 248 

much faster than the covalent modification. It corresponds to the region in lower part of the 249 

heat map in Fig. 3. This condition is satisfied if i) an irreversible inhibitor has to overcome a 250 
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relatively large energy barrier to covalently modify the receptor; ii) drug dissociation is rapid; 251 

iii) a combination of both. Within the parametric region of 
on d  , 1d  and 1,i  252 

model (12) can be further reduced to 253 

1

1





    
         

on

on

r r

c c
                                                                    (19) 254 

Model (19) is a description for protein-based assay when reversible inhibitor is applied 255 

while the covalent modification is negligible. In order to determine how small i  should be 256 

so that the simplified model in (19) can be applied, simulations are conducted using the full 257 

model under 
810 ,d
  and reduce i  gradually to search for the threshold level that will 258 

produce a response close to the simplified model response. Fig. 6 shows that when i  is 259 

reduced to 71 10 ,  the full-model response is very close to that of the simplified model (19). 260 

This suggests that when 
710 ,i
  the simplified model in (19) can be used to approximate 261 

model (12) with a good accuracy. 262 

 263 

 (a) Full model at 
8 71 10 , 1 10d i                        (b) Approximate model (19) 264 

Fig. 6 Dose response curves predicted for different incubation times in  : black dotted line 265 

for 10-3; red line with circles for 100; blue dash-dot line for 103; green solid line for 106. (a) 266 

Full model (9) simulated at 
8 71 10 , 1 10d i      ; (b) Approximate model in (19).  267 

In this case, 
d d

d d

r c

 
  ,  trace( ) 1 onT    A , det( ) 0  A , 

1 ( 1)onT      and 268 

2 0  . Under the given initial conditions, the time responses of the two dimensionless 269 

concentration terms can be solved explicitly to yield 270 
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  

  

1

1

1
( ) 1

1

( ) 1
1

on

on

on

on

on

on

r e

c e

 

 

 







 

 

 


 


                                                                    (20) 271 

The time scale of this dynamic system is determined by 
1  or by on . The larger is on , the 272 

faster response the system has, and vice versa. The time responses of r  and c  under different 273 

levels of on  are illustrated in Fig. 7. 274 

With model (19), the steady state is not determined by (13) since i  is taken to be zero. In 275 

fact, the equilibrium points for system (19) can be derived from (20) to give  276 
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r e

c e

 


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 

 

 

 



 



  
 

  
 

                                            (21) 277 

It can be concluded that 1ss ssr c   at the steady state. The larger is on , the smaller is ssr  278 

and the larger is ssc . This can be clearly seen in the dynamic simulation results shown in Fig. 279 

7. 280 

 281 

      (a) Time response r                                              (b) Time response c   282 

Fig. 7 Time responses of r and c with approximate model (19) under different levels of on . 283 

For incubation time  1 1 , m on
 r is close to its steady state (see simulation for each 284 

on  in Fig. 7). Hence, dose response measurements taken beyond this point would appear 285 

time-invariant.  286 
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In summary, our analysis of fast drug process suggests for dose response to appear time-287 

invariant, the following two requirements need to be satisfied. Firstly, the apparent first-order 288 

rate on  and the first-order covalent bond formation rate  i  need to be largely different so 289 

that the two time scales characterized by 
11   and 

21   are well separated from each other. 290 

Secondly, observation time has to be between the two time scales, which corresponds to 291 

region II in Fig. 4. It can also be observed from dynamic study that the receptor concentration 292 

always decreases monotonically to a steady-state level of zero for the fast drug process, while 293 

the concentration of complex C increases rapidly first and then decreases gradually to zero 294 

except for the case when covalent modification to complex C is negligible, i.e. 0i  . 295 

4 Slow drug process relative to receptor turnover 296 

In the parametric regime where off dk k  or off dk k , i.e. 1d   or 1d , target 297 

coverage duration is comparable to or longer than the receptor life time. This can happen due 298 

to: i) long period of target coverage; ii) fast receptor degradation; and iii) combination of both. 299 

This might be biologically relevant when receptor homeostasis is tightly regulated at the 300 

turnover level. The full model in (9) is used in this regime. 301 

Again the eigenvalue method can be used to analyze the system dynamics. The 302 

homogeneous part of (9) is X AX . The trace of A is  trace( ) 1 on d iT        A , 303 

the determinant of A is det( ) d on i d i        A . The two eigenvalues are 304 

 2

1,2

1
4

2
T T    . 305 

For  2

1

1
4

2
T T     , the associated eigenvector is  306 
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 307 

For  2

2

1
4

2
T T     , the associated eigenvector is  308 
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Under the initial condition of  
T

0 1 0X , the general solution to the homogeneous part 310 

can be written as ( )M  in (18). Taking the non-homogeneous part  
T

0df  into account, 311 

the general solution to (9) is written as follows 312 

 
T 1 1

0
0

( ) ( ) ( ) (0) ( ) ( ) ( )dr c t t t


      M M X M M f                                  (22) 313 

The steady-state values of r and c can be obtained through numerical integration with (22), or 314 

calculated explicitly by (10) and (11). 315 

Similar to the heat map in Fig. 3, we first plot 10 2 1log ( / )   as a function of on  and i  316 

in log10 scales (Fig. 8). Taking off dk k , i.e. 1d   (Fig. 8 (a)), separation of time scales 317 

happens if either on offk k  and i offk k  (blue region in Fig. 8 (a)), or on offk k  and 318 

i offk k  (light green region in Fig. 8 (a)), with the former leads to more pronounced effects. 319 

In contrast, in the case of 0.001off dk k , i.e. 1000d   (Fig. 8 (b)), separation of time scales 320 

takes place if i offk k  (bottom part in Fig. 8 (b)), and the condition of on offk k  makes the 321 

separation more pronounced.  322 

 323 

(a) off dk k  324 
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 325 

 (b) 0.001off dk k  326 

Fig. 8 10 2 1log ( / )   plotted as a function of 10log ( )on  and 10log ( )i . Values between -10 327 

and 0 are colour-coded. (a) off dk k ; (b) 0.001off dk k .  328 

The following can be verified in this parametric regime:  11 2 1 0dv      , 329 

12 1 2( ) 0dv     . Considering the analytic solution, it is likely for r to decrease first with a 330 

time scale determined by 
1  and then recover with a time scale determined by 

2  in the 331 

longer term, if 
1  and 

2  are sufficiently apart. 332 

An example is discussed to illustrate these ideas by taking off dk k  and i dk k . This 333 

means the receptor degradation is as fast as target coverage and the drug overcomes a large 334 

energy barrier to covalently modify the receptor.  335 

Suppose off dk k  and 0.001i dk k . Under this condition, receptor initially decreases as a 336 

result of drug inhibition, and then recovers towards steady states (see Fig. 9 (c) and Fig. 9 (d)). 337 

In the context of dose response curves, this means measurement taken before recovery in r 338 

would make the drug appear more potent than the actual steady-state response. For 1on  , r 339 

is predicted to be smaller for 1   than for 10,100,1000   (Fig. 9 (a)). In addition, this 340 

trend is consistent throughout on  values to a larger range (Fig. 9 (b)). Hence, the dose 341 

response simulated for 1  (black dotted curve) appears to be more potent than any other 342 

curves in Fig. 9 (a)-(b).  343 
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  344 

                      (a) 3[1,10 ]                                                          (b) 6[1,10 ]   345 

 346 

                 (c) 1on d                                                      (d) 10, 1on d    347 

Fig. 9 Dose response curves, time response of r and c under 0.001i  . 348 

According to the heat map in Fig. 8 (a), higher on  leads to smaller 2  (the blue region in 349 

Fig. 8 (a)), which makes recovery time in r being longer. To examine this observation, time 350 

responses of r and c are simulated for 1on   and 10on  , respectively, as shown in Fig. 9 351 

(c) and (d). It can be seen that time response simulation at 10on   predicts an elongated 352 

recovery period in r (Fig. 9 (d)) compared with that in 1on   (Fig. 9 (c)). This observation is 353 

consistent with the separation of different dose response curves in Fig. 9 (a).  354 

In slow drug process, the increase of complex concentration is monotonic over time, while 355 

the receptor concentration first decreases in a short time and then increase towards a constant 356 

level in a longer time. The numerical solutions for r and c at steady states shown in Fig. 9 (c) 357 

and (d) are validated by the model-based analytical results in (10) and (11). 358 

 359 
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5 Applications 360 

Aberrant activity in Epidermal Growth Factor Receptor (EGFR) signaling has profound 361 

implications in different types of tumour. Recently, off onk k   and 
ik  are reliably quantified 362 

from cell-free assays for different irreversible EGFR mutant (EGFRm) inhibitors [20]. 363 

However, this study was not able to determine the actual values of  *

on on offafatinibk k   364 

and offk . Instead, 
*

onk , that is  drugonk  in our context, was assumed to be close to diffusion 365 

limit at 100µM
-1

s
-1

 in order to calculate values for offk . The reported values are tabulated 366 

below: 367 

compound koff, s
-1

 ki, s
-1

 Ki(nM) 

CI-1033 0.19±0.04 0.011±0.0002 1.9±0.4 

dacomitinib 1.1±0.1 0.0018±0.0001 10.7±0.9 

afatinib 0.3±0.1 0.0024±0.0003 2.8±0.6 

neratinib 0.2±0.1 0.0011±0.0002 2.4±0.5 

CL-387785 18±4 0.002±0.0003 180±40 

WZ-4002 23±5 0.0049±0.0015 230±50 

 

Table 1. Parameter values inferred from reaction progress curves measured for H1975 cells 368 

carrying L858R and T790M mutations in EGFR, using an ODE model. This table is 369 

reproduced from the supplementary information in [20]. The plus-or-minus values are 370 

standard deviations from averaging three replicated, entirely independent experiments. 371 

i on offK k k .  372 

We simulated the cell-free assay of afatinib by using the model in (9) by taking 0. d  This 373 

predicts the IC50 for on  at 30-minutes incubation has a mean value of 0.13 (i.e. assuming 374 

3 12.4 10 sik    , 10.3soffk  ) (see Fig. 10 (a)). Since * ][on on offafatinibk k  , afatinib’s 375 

IC50 at 30-minutes incubation is predicted to be 0.4nM. Considering different combinations 376 

of ik  and offk  values as reported in Table 1, afatinib’s IC50 at 30-minute incubation is 377 

predicted to be within the range of [0.27,0.6] nM.  378 
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It is reported that the internalisation rate of EGFR receptor is approximately 0.2min
-1

 in 379 

breast cancer cells [21]. Hence, 
21.1 10d d offk k    . Considering 38.0 10i

  , this is 380 

similar to the fast drug process parametric regime discussed in Section 3.3. Model simulation 381 

in Fig. 6 suggests dose response curves taken at 1   and 100   should be close. 382 

Using model (12) to mimic in vitro cell assay conditions by taking 21.1 10 ,d
   simulated 383 

dose response curves at different incubation durations shift further to right (Fig. 10 (b)) 384 

compared with that of 0 d  (Fig. 10 (a)). In Fig. 10 (b), with IC50 for on  at 1-hour 385 

incubation at approximately 1.4, a 10-fold increase from the predicted protein-based assay 386 

(i.e. 0.13) is observed. Consistent with these simulation results, approximately 10-fold 387 

difference was reported for cell-based assay and protein-based assay for afatinib [21] 388 

It can be seen from the above discussions that the simple model in (9) can be used 389 

conveniently to generate insights into the connections and differences between protein-based 390 

assay and cell-based assay. 391 

 392 

(a) 0d  , 
38.0 10i
  . This mimics             (b) 

21.1 10d
  , 

38.0 10i
  . This  393 

              the cell-free assay condition.                               mimics the in vitro cell assay. 394 

Fig. 10 Simulated dose response curves for afatinib. 395 

6. Conclusions and discussions 396 

At lead generation and optimization, it is important to understand the Mechanism Of 397 

Action (MOA) of a chemical compound, as well as the Structure-Activity Relationship 398 

(SAR), in the hope that ultimately a compound with sufficient therapeutic efficacy is taken 399 

further for preclinical development. Reversibility of a compound is a crucial aspect of MOA 400 
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characterisation. This often remains unknown for compounds coming out of empirical 401 

screening methods. Towards this goal, assays have been established to study inhibition 402 

reversibility [22]. It is generally accepted that response to irreversible inhibitors are time-403 

dependent. Hence, it is often taken for granted that time-independence indicates inhibition 404 

reversibility. However, our model-based analysis refutes this claim.  405 

We demonstrated iff inhibitor binding and dissociation processes are much quicker than 406 

receptor turnover, this system can be approximated by one concerning inhibition only, which 407 

is equivalent to the protein-based assay. Based on the numerical simulation using a simple 408 

model, it is observed that for protein-based assays, under certain parameter conditions, the 409 

dose response curves can be very similar to each other (compare the middle curves in Fig. 2 410 

(d)), given 1000-fold variation in incubation time. This indicates dose responses might appear 411 

time-invariant for a particular parameter setting. In practice, these data might not be 412 

statistically different and can be erroneously taken as evidence of reversible inhibitor.  413 

We subsequently analyzed the impact of cell parameters on dose response, including target 414 

synthesis and degradation, using the proposed model. Our ensuing analysis of the eigenvalues 415 

provides a more general understanding. For dose response to appear time-invariant, the 416 

apparent first-order association rate on  and the first-order covalent bond formation rate  i  417 

need to be well separated so that the system has two very different time scales. In particular, 418 

when a slowly-dissociating irreversible drug is applied to a receptor under fast turnover, dose 419 

response may be highly similar to each other under a variety of incubation periods. Hence, it 420 

is inappropriate to conclude an inhibitor being reversible given time-independent dose 421 

response, either based on protein-based assay or cell-based assay. 422 

The main purpose of this analysis is to demonstrate the relationship between dose response 423 

and parameter values in drug and cell processes. For the sake of simplicity, we only 424 

considered a linear model in which each reaction follows first-order kinetics. In addition, we 425 

did not consider biological regulation over synthesis, degradation and sub-cellular 426 

localisation of a receptor [20]. Results obtained in this paper are specific to the form of this 427 

linear model. In reality, receptors are often regulated under different levels via feedback 428 

mechanisms. This often necessitates mechanistic modelling of a biological pathway to aid in 429 

interpretation of in vitro cell assays.  430 

It is evident from both numerical simulation and analytical study that the proposed model 431 

is globally asymptotically stable. For the fast drug process considering complex elimination, 432 
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the reduced model (12) is proposed. The receptor concentration decreases monotonically to 433 

its steady-state level of zero, while the complex concentration initially increases rapidly and 434 

then decreases gradually to zero when the complex elimination is considered (see (13) for 435 

steady-state calculation). When the complex elimination is negligible, the reduced model (19) 436 

is used. The system will have non-zero steady states for both r and c following a conservation 437 

law of 1ss ssr c   (see (21) for the explicit solution). For the slow drug process including 438 

both reactions (1) and (2), the full model (9) is used to describe the dynamic system, and the 439 

steady-states are explicitly represented by (10) and (11) for r and c, respectively. In this case, 440 

the complex concentration increases monotonically over the whole process, but the receptor 441 

concentration first decreases rapidly and then increases gradually on a slower time scale back 442 

towards its steady state. The similar rebound behaviour in receptor was also observed and 443 

discussed in other TMDD model-based studies [12; 14; 15]. 444 

For a drug discovery and development programme, the in vitro model should be used to 445 

identify parameter values from in vitro data. These parameters can be used subsequently to 446 

help identify the remaining parameter values in the in vivo model. This step-wise fitting may 447 

reduce uncertainty in parameter estimation. In this context, the in vitro model described in 448 

this paper improves the utility of TMDD models.  449 
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